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Abstract—Drowsy driving poses considerable risk not only
to drivers themselves but also to other people on the road.
It has been demonstrated that information contained in elec-
troencephalography (EEG) signal can be used to identify driving
drowsiness. To date, most of work focused on the detection of
drowsiness within a session. This hampers the generalization
of the trained model to a following session conducted after a
few days. As we know, EEG is non-stationary and changes
dramatically across sessions, which leads to a great challenge how
to establish a model that has a good performance across sessions.
In this study, we combined boosting strategy and transfer
learning method to establish a model for identifying driving
drowsiness states from alertness states based on the features of
power spectral density (PSD). The model trained using the data
collected a few days ago (session1) was tuned using very small
portion of the data collected in the current session can achieve
a good performance as tested in the current session (session2).
The results demonstrated that the proposed boosting transfer
learning method significantly outperformed the support vector
machine (SVM) and AdaBoost methods. The proposed method
could promote practical use of drowsiness detection system in a
real vehicle due to its good cross-session performance.

I. INTRODUCTION

Mental drowsiness could result in unreliable judgment, slow
reaction, and increasing risk of improper operation. It is well
known that driving drowsiness is a significant cause of fatal
traffic accident, numerous damage and possible loss of life,
as well as people on the road such as motorbike riders and
pedestrians [1]. A drowsiness detection system can be used to
warn drivers and prevent them from drowsy driving so that
drowsiness-related accidents can be eliminated.

To date, diverse indicators of drowsiness have been inves-
tigated. One of them is the driving behavior. For instance,
drowsiness can be detected through steering actions and lane
keeping performance. It can also be detected from video. The
sign of drowsiness on the face can be captured by a real-
time video processing system based on facial feature tracking
technology [2]. Drowsiness can also be assessed through a
questionnaire. However, this method is very subjective and
its success largely depends on drivers, which is susceptible
to drivers’ mental status (e.g., memory and consciousness).
Literature [3]–[5] has illustrated that drowsiness detection
based on self-report is unauthentic. In contrast, EEG-based
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methods have been shown to be more objective for drowsiness
detection and EEG signal is of an adequate temporal resolution
[6]. Besides, EEG signal is also widely utilized in clinical
application, health care, and laboratory researches. The most
challenging problem for the use of EEG signal is its non-
stationarity, which is accounted for physiological and instru-
mental interferences. Therefore, the distribution of EEG varies
across sessions which are recorded in different days. In other
words, a model trained by the data collected several days ago
may not well classify the data currently collected. This issue
can be released by transfer learning method. A model trained
using the data from past session and a small portion of current
session can perform well due to the advantage of intrinsic
information transferring. Another method, namely boosting
strategy, is able to automatically adjust the weights of training
samples in order to focus on the informative instances. In this
study, we considered the advantages of transfer learning and
boosting methods and combined them for driving drowsiness
classification in order to have a good performance in the cross-
session classification.

AdaBoost is an adaptive framework which carefully tweaks
the weights in favor of those misclassified samples with
informative data. As an extension to AdaBoost, transfer Ad-
aBoost learning framework, namely TrAdaBoost [7], adds a
mechanism to increase the weights of source samples similar
to target data in order to strengthen the linkage between
source and target. If a model is trained using multiple sources
which are different from the target, the TrAdaBoost is called
MultiSourceTrAdaBoost [8]. In this study, data collected a few
days ago are considered as source and data collected currently
are considered as target. The source data are used as a whole
for the TrAdaBoost and source data are divided into several
groups as multiple sources for MultiSourceTrAdaBoost. More
details can be found in Section II. The results are presented in
section III and the conclusion is finally drawn in section IV.

II. MATERIALS AND METHODS

A. Experiment and data preprocessing

The experiment protocol was reviewed and approved by
the Institutional Review Board of the National University of
Singapore. Nine healthy subjects aged between 20 and 27
years (two of them are female) participated in the study.
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All subjects have normal or corrected-to-normal vision and
no history of substance addiction or mental disorders. They
were required to have a full night sleep (>7h) prior to the
experiment and to refrain from consuming caffeine or alcohol
on the day of the experiment. They were instructed to drive
virtual car by the Logitech G27 Racing Wheel set to follow
a guiding car and avoid collision as possible as they can.
Each subject performed two identical driving sessions (one
hour and a half for each session), which were implemented
approximately one week apart from each other. 24 EEG
channels and 2 EOG channels were utilized to record signal by
Cognionics headset (Cognionics, Inc., USA) at the sampling
rate of 250 Hz.

The EEG data were preprocessed using EEGLAB toolbox
[9] through the following steps: common average reference,
poor contact channel interpolation, data removal of the last
5-min recording (because of the change of driving mode),
band-pass filtering (0.5 ∼ 45 Hz), partitioning continuous
recording into 2-sec long epochs, abnormal epoch reject, ICA
artifacts removal. After the preprocessing, the epochs within
the first 15 minutes were considered as samples of alertness
while the epochs within the last 15 minutes were considered
as samples of drowsiness. The number of alertness samples
is 405 ± 27 (mean±standard deviation) and the number of
drowsiness samples is 359±41 in session 1. There are 416±30
alertness samples and 327±59 drowsiness samples in session
2.

B. Feature extraction

Fourier transform was used to convert temporal EEG data
into spectral data. In this study, five typical frequency bands
(i.e., delta: 1 ∼ 3 Hz, theta: 4 ∼ 7 Hz, alpha: 8 ∼ 13 Hz,
beta: 14 ∼ 30 Hz and gamma: 31 ∼ 40 Hz) were extracted
to be features, resulting in a feature vector of 120 dimensions
(24 channels × 5 frequency bands). In order to reduce the
variation of band powers across samples, band powers were
normalized to the total power of five bands. In addition,
principal components analysis (PCA) was employed to reduce
the number of dimensions in the feature space.

C. Transfer learning

A domain notated as D = {X , P (X)} contains two parts, a
feature space X and a marginal probability distribution P (X),
where X = {x1, x2, ..., xn} and xi ∈ X . A task notated
as T = {Y, f(x)} also contains two parts, a label space
Y = {+1,−1} (alertness state and drowsiness state) and a
boolean function f(x) that returns the label for sample x. The
traditional machine learning algorithms assume that source
domain DS is exactly same to target domain DT . However,
they are different in our case because EEG signals are non-
stationary and vary from one session to another session.
Therefore, traditional machine learning algorithms cannot well
classify mental states across sessions. Transfer learning meth-
ods may tackle this problem. The invariant information learned
from the data collected in a past session (e.g., a few days ago)
can be transferred to benefit the classification of the current

Fig. 1: Illustration of the MultiSourceTrAdaBoost. The yellow
block DT represents extremely limited training data from
target domain. N blue blocks DS1, DS2, ..., DSN represent
the training data from N source domains. N hexagonal blocks
stand for the training data from both DT and DS after
weighting samples. N weak classifier candidates are trained
using N combined training data, respectively. The best one
with minimum error rate as tested on a small portion of
training data from DT is selected as a weak classifier ht. All
dashed lines represent data weighting. The weights of training
samples are updated according to the formulas (1) and (2).

session by shifting learning attention on the samples which are
similar to the samples of the current session. Specifically, all
samples from DS and a small portion of samples randomly
selected from DT were used to train a model. The samples
from DS that are more similar to the samples from DT are
assigned larger weights so that the model learn more from
these samples. Therefore, the model could better classify the
current session as its learning focuses on the samples similar
to the sample of the current session.

D. Boosting transfer learning

Domain adaptation is a kind of policy in transfer learning
that attempts to make the distribution of DS closer to DT from
the source task TS to the target task TT . It was proposed to let
classifiers learn with a limited or even no labeled samples from
DT by leveraging a large number of labeled training data from
DS . However, it doesn’t work satisfactorily when DS transfer
uninformative knowledge. In this case, the brute-force transfer
to DT is harmful to classification performance in TT , which
is well-known as negative transfer. Thus, knowledge selection
is a key procedure in domain adaptation.

We recall AdaBoost, a famous boosting algorithm aiming to
improve classification performance by adjusting the weights of
training data at each iteration in order to emphasize on misclas-
sified samples. Inspired by this, the informative samples from
DS are emphasized through increasing their weights. They
are believed to be similar to target samples and supposed to
increase influence on weak classifiers at the next iteration. In
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Fig. 2: Average accuracy comparison among four methods. (a) The change of accuracies averaged across all subjects along
with different percentages of samples from DT used for training when 30 dimensions are retained after the PCA dimension
reduction. (b) The change of accuracies averaged across all subjects along with different number of dimensions retained after
the PCA dimension reduction when 9 % of samples from DT were used for training.

contrast, the weights of the less informative samples from DS

should be decreased so as to weaken their impacts at the next
iteration. More precisely, the updating rule of the weights of
training samples from DS is

ωt+1
i = ωt

ie
−αS |ht(xi)−yi|, i = 1, 2, ...,MS (1)

where MS is the number of training samples from DS , ωt+1
i

and ωt
i are the weights of the ith sample in the current

iteration and the next iteration, respectively. ht(xi) is the weak
classifier’s prediction of the ith sample after current training
iteration and yi is the ground truth of the ith sample. αS is a
predefined coefficient related to the number of source samples
ns and the maximum number of iterations M according to
the formulas (3). The updating rule of the weights of training
samples from DT is similar to that of AdaBoost as follows

ωt+1
i = ωt

ie
αt

T |ht(xi)−yi|, i = 1, 2, ...,MT (2)

αS =
1

2
ln (1 +

√
2 ln

nS

M
) (3)

where MT is the number of training samples from DT , αt
T is

a coefficient corresponding to error rate of the weak classifier
over target domain. This algorithm is an extension of the
AdaBoost, known as TrAdaBoost [7].

TrAdaBoost might lead to negative transfer since TrAd-
aBoost transfers knowledge only from one source. The per-
formance of TrAdaBoost only depends on the relationship
between a unique source and target. If there are more sources
available and each of them is different from target, the
knowledge can be transferred from multiple sources so that
the risk of negative transfer can be greatly reduced. This
strategy is known as MultiSourceTrAdaBoost [8]. In our case,
samples from the source session are randomly partitioned into
N groups, which are considered as N sources. It is worth
noting that each source should include both alertness and
drowsiness samples. Samples from N sources are respectively
merged with the samples from DT to form N sets of training

samples. These N sets of training samples are then used to
train N weak classifier candidates, respectively. Subsequently,
the best weak classifier with minimum error rate as tested
on a small portion of training data from DT is chosen. The
αt
T mentioned above represents the coefficient of the weak

classifier chosen at the tth iteration,

αt
T =

1

2
ln

1− εt
ϵt

(4)

where εt is the minimum error rate at the tth iteration.
Assuming that the number of iterations is M , we can finally
obtain M weak classifiers. The final decision function f(x) is
a linear combination of M weak classifiers as follow,

f(x) = sign(
M∑
t=1

αt
Tht(x)) (5)

An illustration of the MultiSourceTrAdaBoost is shown in Fig.
1.

III. RESULTS

As support vector machine (SVM) is a powerful supervised
learning algorithm which has been widely and frequently used
for a number of classification tasks, we therefore compared
the boosting transfer leaning methods (i.e., TrAdaBoost and
MultiSourceTrAdaBoost) to the SVM. The boosting transfer
leaning methods were also compared to the AdaBoost because
of its popularity in the category of boosting method. In the
comparisons, training data and testing data were kept identical
for all methods. For the SVM, a ’grid-search’ recommended in
[10] was utilized to seek optimal parameters (C in the linear
kernel, C and γ in the radial basis function (RBF) kernel)
in order to avoid the deflation in the performance. We found
that the SVM with the RBF kernel generally performed better
than that with the linear kernel in our study. Therefore, the
reported accuracies for the SVM method were obtained using
the RBF kernel. For the methods of AdaBoost, TrAdaBoost
and MultiSourceTrAdaBoost, linear SVM was used as weak



classifier. For the MultisourceTrAdaBoost method, the number
of sources N was optimized at a range of 1 ∼ 60 with an
incremental step of 1, and the best results were reported.
Because accuracy was not consistent due to random selection
of samples, we repeated the evaluation 10 times and compared
average accuracies between methods.

The performance was affected by the percentage of sam-
ples from DT used for training and the number of retained
dimensions after the PCA dimension reduction. We therefore
compared the performance between methods using different
settings. The results were shown in Fig. 2. The left pan-
el in Fig. 2 shows that the classification performance was
monotonously increased as the increasing in the number of
samples from DT . The accuracy was quickly elevated at the
beginning of the increasing of the samples from DT and then
tended to slight improvement for the boosting transfer learning
methods. The accuracy of SVM was gradually increased
with the increasing of the samples from DT . The improve-
ment was very less for the AdaBoost. In the comparison
of classification performance, the boosting transfer learning
methods consistently outperformed the SVM and AdaBoost.
The MultiSourceTrAdaBoost is better than the TrAdaBoost,
which might be due to much lower probability of negative
transfer. The right panel in Fig. 2 shows that the accuracies
of all methods were first increased along with the increment
of the dimensions retained after the PCA, and then were not
changed too much after 30 dimensions.

Fig. 3 shows the performance comparison of the four meth-
ods when 9 % of samples from DT were used for training and
the number of dimensions retained after the PCA dimension
reduction was 30. According to the two-tailed t-test, the boost-
ing transfer learning methods significantly outperformed the
AdaBoost and SVM methods. The highest performance (i.e.,
%) was achieved by MultiSourceTrAdaBoost method. The
standard deviations of the boosting transfer learning methods
were greatly less than that of the AdaBoost and SVM, which
reflects that the boosting transfer learning methods are more
robust for driving drowsiness classification across subjects.

IV. CONCLUSION

In the study, we combined boosting strategy and transfer
learning method (i.e., boosting transfer learning) for driving
drowsiness classification. The results demonstrated that the
performance of driving drowsiness classification was sig-
nificantly improved compared to the AdaBoost and SVM
methods. MultiSourceTrAdaBoost method achieved the high-
est performance due to the advantage of multiple sources.
TrAdaBoost method was worse than MultiSourceTrAdaBoost
method in the classification performance, but was much better
than AdaBoost and SVM methods. Taken together, it can be
seen that the combination of boosting strategy and transfer
learning method can improve the driving drowsiness classifica-
tion. This suggests that the boosting transfer learning might be
a good choice when developing a drowsiness detection system
in a real vehicle.
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Fig. 3: Performance comparison of the four methods when 9
% of samples from DT were used for training and the number
of dimensions retained after the PCA dimension reduction
was 30. The bars stand for average accuracies while the
error bars represent standard deviations. Asterisks indicate the
significance levels of accuracy differences between methods
(* p < 0.05; ** p < 0.01; *** p < 0.001).
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